Herbstsymposium des Ärztevereins Werdenberg/Sarganserland

Genetische Beratung bei Krebs: Wer, wie, warum?

Prof. em. Dr. med.Hansjakob Müller Medizinische Genetik USB 4031 Basel hansjakob.mueller@unibas.ch **Aufbau des Referates**

- 1. Grundsätzliches:
 - über Veranlagungen für Krebskrankheiten
- über die genetische Beratung
- 2. Konkretes zur genetischen Beratung bei:
 - hereditärem Brustkrebs
 - hereditärem Kolorektalkarzinom
 - seltenen Krebskrankheiten
- 3. Ausblick: Probleme im heutigen Zeitalter von Genomics, Genetik-Boards

2

Cancer can run in a family

Zufall/ ungesunder Lebensstil/ Exposition gegenüber Karzinogenen/ Veranlagung

Genetische Risikofaktoren für Krebskrankheiten

- ➤ Major susceptibility genes:
 - Ihre Mutationen haben eine hohe Durchschlagskraft (Penetranz).
- Sie disponieren zu monogenen Erbkrankheiten.
- ➤ Minor susceptibility genes:
- Varianten mit einer mässigen Penetranz: RR: 2 4
- Varianten mit einer geringen Penetranz (=SNPs): RR: <1.5
- > Ferner:

4

- RNA-only-Gene und andere konservierte DNA-Sequenzen
- Vererbbare epigenetische Modifikationen

RR = relatives Risiko

SNPs = «Single Nucleotide Polymorphisms»

3

Committee on Genetic Counselling of the American Society of Human Genetics, Am. J. Hum. Genet 1974; 26: 637

Was soll die genetische Beratung leisten?

Die genetische Beratung umfasst den Versuch, beim Auftreten einer genetischen Erkrankung in einer Familie oder beim Risikos des Auftretens einer solchen Individuen respektive Familienangehörigen zu helfen, d.h.:

- die medizinischen Fakten einschliesslich deren Diagnose, des mutmasslichen Verlaufs und der zur Verfügung stehenden Behandlung - zu erfassen,
- den genetischen Anteil der Erkrankung und das Wiederholungsrisiko für bestimmte Verwandte zu begreifen,
- 3. die verschiedenen Möglichkeiten zu erkennen, mit dem Wiederholungsrisiko umzugehen,
- 4. eine Entscheidung zu treffen, die ihrem Risiko, ihren familiären Zielen, ihren ethischen und religiösen Vorstellungen entspricht, und in Übereinstimmung mit diesen zu handeln,
- sich so gut wie möglich auf die Behinderung des betroffenen Familienmitglieds und/oder auf das Wiederholungsrisiko einzustellen.

5

Genetischen Beratung: ein historischer Rückblick

Früher:

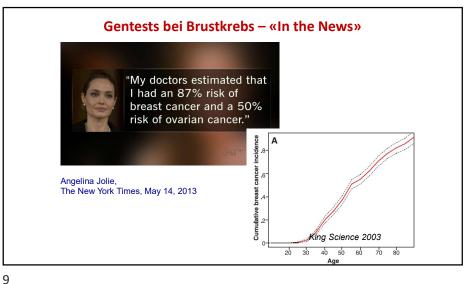
"Rat holen" – "Rat erteilt"

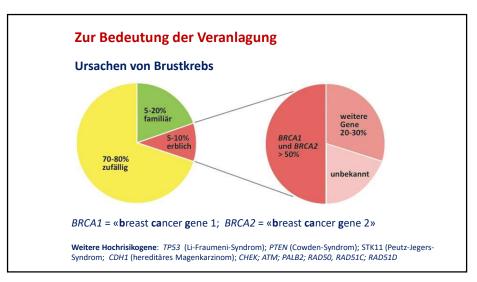
Paternalismus

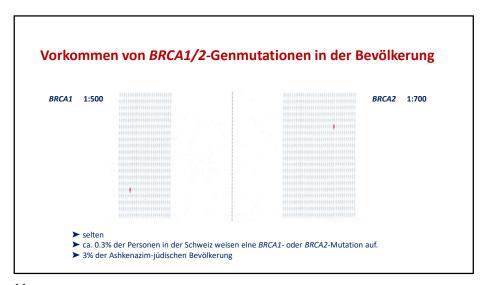
Heute:

6

8

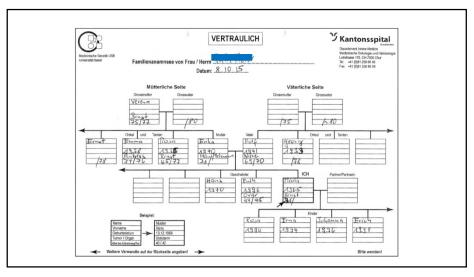

"sich gemeinsam beraten"
Einbinden in den Entscheidungsprozess

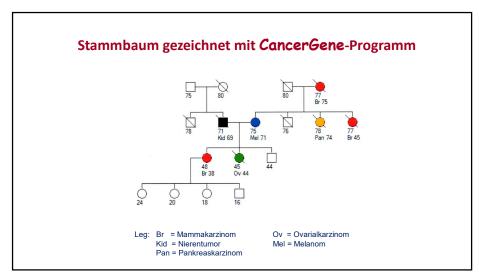

Translation genetischer Laborbefunde Interpretation Kommunikation Individuelle Genetische Genetische ärztliche Hilfe Labordaten Informationen (Mutationen/Varianten) (klinische Relevanz) unter Berücksichtigung von: Indikation Medizinisch-genetische Fakten plus: Aussagekraft / Reichweite - Psychosoziale Implikationen

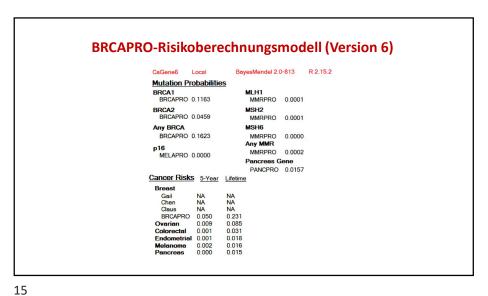

Ethische AspekteRechtliche Gegebenheiten

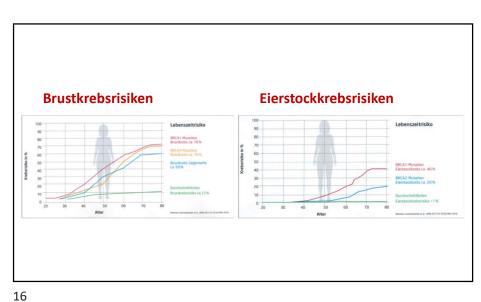
Eigenschaften der Erbkrankheit

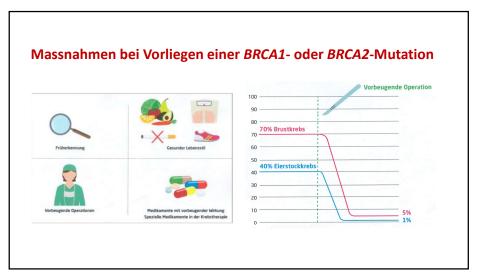
7

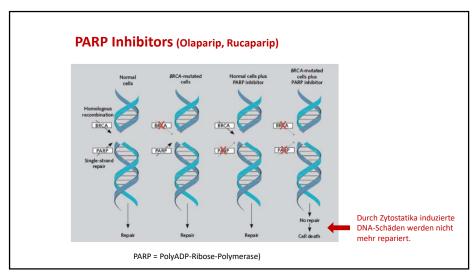


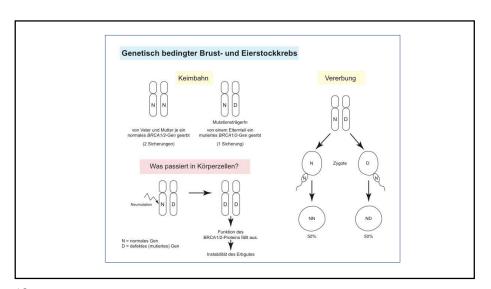


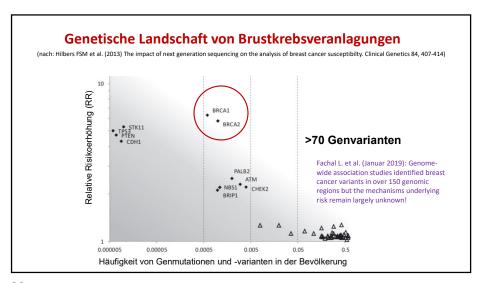

Wann ist eine solche Veranlagung zu vermuten?


- ▶ Mehrere an Brustkrebs erkrankte Frauen (<50 Jahre) in einem Familienzweig
- ► Vorkommen von Brust- und Eierstockkrebs
- ► Frühes Erkrankungsalter: Brustkrebs <40 Jahre
- ► Beidseitiger Brustkrebs
- ► Spezielle Biologie: "triple-negativ", medulläre und lobuläre Histologie
- ► Brustkrebs bei Männern (männlichen Angehörigen)


11 12







19

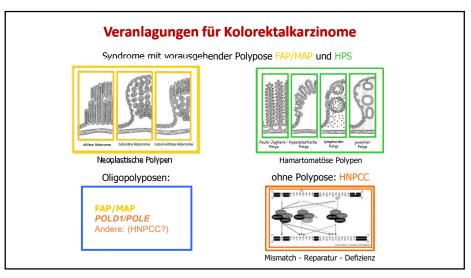
Angebote von Gen-Panels für familiär auftretende Mamma- und Ovarialkarzinome 1. Ambry Genetics 17 Gene (davon 10 "core genes") (Breastnext) 2. Centogene 18 Gene (6 von 10) (Breast Ovarian Cancer Panel Plus) 3. Illumina 94 Gene (inklusive 10) (TruSight Cancer) 4. Myriad Genetics 25 Gene (inklusive 10) (Myriad myRisk) 5. University of Washington 26 Gene (inklusive 10) (BROCA-Cancer Risk Panel) 6. Multiplicom 26 Gene (inklusive 10) (BRCA Hereditary Cancer MASTR Plus) 7. GC-HBOC 34 Gene (inklusive 10) 10 "core genes": ATM, BRCA1, BRCA2, CDH1, CHEK2, NBN, PALB2, RAD51C, RAD1D, TP53 — In Evaluation: BRIP1, MUTHY, PTEN, STK11

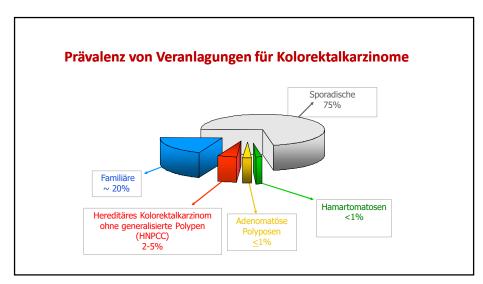
Lit. Meindl A et al. Genetik des familiären Brust- und Eierstockkrebses: Paneldiagnostik – Möglichkeiten und Grenzen. medgen 2015; 27: 202-210

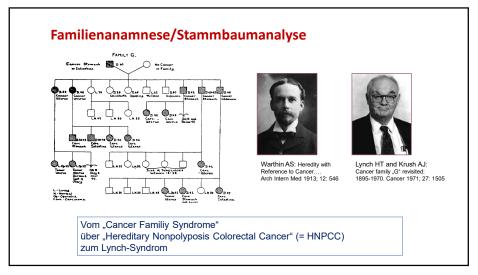
CanRisk-Programm von BOADICEA Version
v1.1.0 vom 20.08.2020

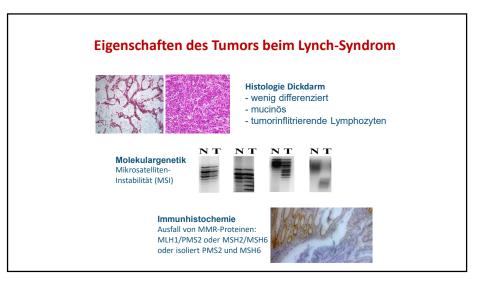
Mutation Carrier Probability

From the breast cancer model, based on the woman's information, the mutation carrier probability for a pathogenic variant in:


BRCA1 is 8.70%
BRCA2 is 6.00%
BRCA1 or BRCA2 is 14.70%
PALB2 is 4.50%
CHEK2 is 2.90%
ATM is 2.90%


21 22


Bei der onkogenetischen Beratung wird man unweigerlich mit ethischen Problemen konfrontiert! Multigen-Panels für Krebserkrankungsrisiken Herausforderungen: Vorteile: - höherer Anteil von "positiven" Befunden - Zeitersparnis, geringere Kosten - uneindeutige (noch ungeklärte) klinische Validität - positives Resultat: ("off-phenotypes? Erkrankungsrisikos? gezielte Massnahmen zur Risikoreduktion Krankheitsspektrum?) - negatives Resultat: - noch nicht etablierte klinische Nützlichkeit gefürchtetes Krebsrisiko nicht nachweisbar ("clinical utility") - Variants of unknown clinical significance (VUS) - Zufallsbefunde/Mosaizismen ---> mehr diagnostische Gewissheit mehr Informationen mehr Wissen


Hereditär	е	K	re	b	S	Sy	/r	ıd	lr	ome	B = Br $KR = Kc$							elb)	
Tumorsyndrom/"hereditärer" Krebs	Asso		uftrete	nde N	nbid.	ngen i	n folge	oden		Gen(e)										
	8	0	PR	PA	KR	EN	м	ME	3		Senatiertes Polygose Syndrom						Т	т	т	RNF43
Hereditäres Brust- und Eiersteckkrebs-			Δ	Δ			H		r	88C41	Familiare adenomatõse Polypose (= FAP 1)				Δ	•		Δ	+	APC APC
Syndrom (# HBOC)											MU/HY-associierte Polypose (+ MAP oder					•				MUTHY R
Hereditäres Brust- und Elerstockkrebs- Syndrom (+ HBDC)	^	^	Δ	Δ				Δ		8RCA2	FAP2)						-	+	+	
Phänotypische Varianten des HBOC:	┢				1		H		H		MAP- Polypose (= FAP3) MSH3-Polypose (= FAP4)	Δ				A		+	Δ	NTHLI R
- BADS1C-associantes Krebnisko	Δ	Δ					T		T	#ADSI	Azveniko Polyspose (* PAP 4)				۸	-	1	+	+	A BMPMIA
- PACR2-assoziiertes Krebsrisiko		?		Δ						PALEZ	JPS und hereditäre hämorragische				Δ	-	1	+	_	A DIRPHAN
- CHEY2-associientes Knebsrisiko			Δ		Δ					CHEK2	Telangisktusien						_			
- ATM-associiertes Krebsrisiko	•	?	?	Δ						ATM	Familiare gastorintestinale Strometumore (a GIST)							•		N/T POGERA
- MSN-assozi ertes Krebsrisiko	Δ	Δ	Δ						?	NBW	Melanom-Pankreaskarzinom-Syndrom				_		-	+		CDVNZA
- BRDM1-assozilertes Krebsrisiko	Δ	?							?	BARDI	Melanom-Krebssyndrom (+ MCS)				÷		-+		-	CD64
- BRP1-assoz Tertes Krebsrisi ko	Δ	•							?	8802	Neurofibromotose (= NFI)	Δ					-	-	+	NFT.
- RADS1D assozi ertes Krebsris ko	?	Δ					T		T	RADS1D	Neurofibromatose 2 (= NF2)						_	_	_	MF2
Herod bliner ciffusor Magenkrebs (= HDGC)					Δ				T	CDH1	Schwarmornatose						_	_	_	L27912
Li-Fraumeni-Syndrom (* LFS)			Δ	Δ	Δ	Δ	Δ	Δ		TP53										SMARCB1
Cowden-Syndrom (= CS) /PTEN-Hamartoma- Tumorsyndrom (PHTS)					Δ	•			•	PTEN	Papilläres Nierenkardnom						_	_	_	▲ ME7
Poutz-leghers-Sendrom (+ PIS)							+	-		STK11	Familiäre Leiomyomatose mit Nierenzellkrebs (= HLRCC)		Δ			^				≜ FH
Lynch-Syndrom (+ LS oder HRIPCC)	?			Δ						MUH1	Femiliärer Wilms-Turnor									W7I
										MSH2	Tuberôse Siderose-Komplex (= TSC)				Δ					▲ 75C2, 75C2
	2				!		١.	-	١.	EPCAM MSHG	Retinoblastom									ABI ABI
(ynch-Syndrom (+ LS oder HNPCC)	1	Δ		2	•	^	Δ.		Δ	FMS2	Von-Hippel-Lindau-Erkrankung (+ VHL)								_	≜ VHI.
Konstitutionelle MMR-Defizienz (n CMMRD)				Ė						MU12/2/6 R	Multiple endokrine Neoplasie Typ 1 (= NEN1)				Δ					MEN1
										AMS2 R	Multiple endokrine Neoplasie Typ 2									▲ RET
Nicht-LS assoziierte Kolonkarzinome					•				Δ	POLE POLD1	(= MEN2)						-	+	+	
						l	1		1	GREM1	Familiares Neuroblaston Contin-Syndrom, Biostoniholyspandrom		Н					_	_	ALK, PHOX28
						l	1		1	AXW2	Paragangiom-Phäochromozeten-Syndrom		Н	۸			-	+	+	SDMA/D/C/D
						l	1		1	GALNTE2 MPS20	Paragangiom-Phäochromozyten-Syndrom Prostata	^	\vdash	A			-	+	+	HOKR13

23

27

Krebsrisiko bei Personen mit HNPCC* bis zum 70. Altersjahr im Vergleich zur Gesamtbevölkerung

Krebs	Risiko der	HNPCC						
	Gesamtbevölkerung	Risiko	Durchschnittliches Erkrankungsalter					
Kolon	5.5 %	52 - 80 %	44 - 61 Jahre					
Endometrium	2.7 %	25 - 60 %	46 Jahre					
Magen	< 1	6 - 13 %	56 Jahre					
Eierstöcke	1.6 %	4 - 12 %	42.5 Jahre					
Gallenwege	< 1 %	1.2 - 4%	unbekannt					
Harnwege	< 1 %	1 - 4 %	~ 55 Jahre					
Jejunum, Dünndarm	< 1 %	3 - 6%	49 Jahre					
Hirn/Zentralnervensyst	em < 1 %	1 - 3 %	~ 50 Jahre					
* MLH1/MSH2-Heteroz		Bookshelf ID: NBK1211, March 10, 2014						

Denke an die Angehörigen!

Beispiel: hereditärer Dickdarmkrebs ohne vorausgehende Polypose (HNPCC/Lynch-Syndrom)

Dickdarmkarzinom

Polypis in Darm

Dickdarmkarzinom

Polypis in Darm

Tegelmäxsiger Koloneskopie

NLH1-Genmudation

NLH1-Genmudation

29

Polypose-Syndrome

Familial gastric polyposis	APC AD (exon 1b)		NTHL1-Associated Polyposis (NAP)	NTHL1	AR			
(Attenuated) Familial Adenomatous Polyposis ((A)FAP) * \(\Data \)	APC	AD	Peutz-Jeghers Syndrome (PJS) * () ¥	STK11	AD			
Hereditary Mixed Polyposis Syndrome (HMPS)	BMPR1A	AD	Polyposis coli	MSH3	AR			
	GREM1	AD	Polymerase Proof- reading-Associated Polyposis (PPAP) ¥	POLD1 POLE	AD			
Serrated Polyposis Syndrome (SPS)	Unknown RNF43 (?)	AD	Novel Polyposis Candidate Genes	MCM9 FOCAD POLQ	AR AR/AD AD			
Juvenile Polyposis Syndrome (JPS) *	BMPR1A SMAD4 Others	AD	AD Assoziierte Tumor-Spektra (u.a.):					
MUTYH-Associated Polyposis (MAP)	митун	AR		Δ Schilddrü	A Schilddrüse D Eierstöcke			
			AD: autosomal dominant; AR: autosomal rezessiv					

31

Informationsquellen über Veranlagungen/ Erbkankheiten / genetische Abklärungen

• GeneReviews® Pregnante abgefasste, aktuelle Angaben (www.ncbi.nim.nih.gov/NBK/11.6)

• OMIM Daten Bank über menschliche Gene, DNA-Sequenzen, deren

bekannte Mutationen und klinischen Auswirkungen

(www.ncbi.nim.nih.gov/omim)

• EuroGenTest Informationen zum ganzen Prozess der genetischen

Diagnostk bis zur genetischen Beratung in Europa

(www.eurogentest.org)

Orphanet Informationen über seltene Krankheiten und deren Diagnostik

(www.orpha.net)

• European Directory of DNA Laboratories

DNA-Labors und ihre Angebote in Europäischen Ländern

(www.eddnal.com)

Die Medizin wird immer datenbasierter!

- Die genetische Labordiagnostik trägt zu dieser Entwicklung bei!
- Die 4 Ps sind die Folge!

Die Medizin wird:

- prädikativ
- präventiv
- personalisiert
- partizipativ

Wie steht es um das Arzt-Patient-Beziehungsnetz?

33

Resultat de

Der Arzt kann im Umgang mit seinem Patienten Dinge erfassen, die nicht leicht artikulierbar und quantifizierbar sowie mit einem genetischen Labortest nicht erfassbar sind!

Interpretation von Befunden durch das Untersuchungslabor: Mutation oder Variante

Molekularpathologischer Befund

5654: Aszites (Zellblock):

Zellen vom Typ eines Adenokarzinoms, vereinbar mit Ovarialkarzinom vom serösen Typ (gemäss Einsender)

Resultat der Parallelsequenzierung mit dem "Oncomine™ BRCA1 and BRCA2" Panel

(Tumorzellgehalt 25%): Prädiktive Resultate:

BRCA1: Keine prädiktive Mutation detektiert BRCA2: Keine prädiktive Mutation detektiert

Weitere Mutationen

BRCA2: p.R3052Q (55%) im Exon 24, Bewertung: wahrscheinlich benigne

35

Abschliessender Bericht über eine Patientin mit zwei pathogenen Keimbahnmutationen:

> APC c.3159delA

Konsequenz: familiäre adenomatöse Polypose (FAP)

★ Keine Expression des

MSH6-Gens

> MSH6 c.3556+2T>C Konsequenz: Lynch Syndrom (HNPCC)

 St. n. mikrosatelliteninstabilem invasivem intestinalem Adenokarzinom des Rektums, 11 cm ab Anokutanlinie ypT1 pN0 (0/39) M0 L0 V0 Pn0 R0

- St. n. 4 Zyklen neoadjuvanter Chemotherapie mit FOLFOX
- Therapie mit Goserelin ab 03.09.2019 zur Fertilitätserhaltung
- St. n. laparoskopischer totaler Proktokolektomie, Ileumpouch-analer

Rekonstruktion, protektiver doppelläufiger Ileostomie am 12.12.2019

Nebendiagnosen

- 2. Multiple Kolonadenome verteilt über das ganze Kolon, über 100 Polypen
 - Nachweis einer heterozygoten pathogenen APC-Sequenzvariante c.3159DE1A
- 3. Unklare fokale Läsion unten aussen in der linken Mamma
 - MRI vom 30.07.2019: 7 mm messende fokale Signalanhebung unten aussen in der linken Mamma.
- 4. St. n. Appendektomie 2013

NCCN = National Comprehensive Cancer Network

5. St. n. Exzision eines Knotens aus der linken Thoraxwand (Histologie nicht bekannt)

Patientin mit Ovarialkarzinom und mit Brustkrebs belasteter **Familienanamnese**

Risiko einer BRCA1/2-Genmutation gemäss BRCAPRO-Programm:

BRCA1: 47.73% BRCA2: 27.48%

Diagnose

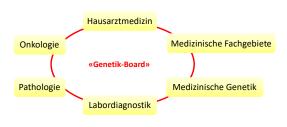
1. Maligne Zellen eines Adenokarzinoms vom Typ eines Ovarialkarzinoms (siehe Kommentar). ER: negativ (0%), PR: negativ (0%)

BRCA1/BRCA2: Kein Mutationsnachweis (siehe Kommentar)

38

In der ergänzten auswärtig durchgeführten Gensequenzierung kein Nachweis einer prädiktiven Mutation bezüglich BRCA1/BRCA2. Details entnehmen Sie bitte der angefügten Befundkopie.

Die Patientin hatte in einem BRCA1-Gen eine Deletion in der Keimbahn, die mittels der Gensequenzierung im Tumorgewebe nicht entdeckt werden kann.


37

Empfehlung der amerikanischen Gesellschaft der Brustchirurgen (ASBrS): «Bei allen Frauen mit Brustkrebs sollte ein Genpaneltest durchgeführt werden!» Nachweis von pathogenen oder möglicherweise pathogene Gendefekte (-Varianten) mittels 80 Gen-Panel 468 Frauen. 480 Kontrollen die die NCCN-Richtlinien erfüllen. Positives Testergebnis bei 9.39% Positives Testergebnis bei 7.9%

Zur Zukunft der Onkogenetik

Genomics und Epigenomics in der Onkologie:

- Eine Übersicht wird für den einzelnen Experten schwierig/unmöglich.
- > Daher sollten an grösseren Kliniken oder Brustzentren regelmässig analog zu den «Tumor-Boards» «Genetik-Boards» mit Teilnehmerinnen/Teilnehmern folgender Fachrichtungen stattfinden:

39 40

(Literatur: Beitsch PD et al. J. Clin Oncol 2019; 37; 453-46)

Die genetische Beratung und Diagnostik trägt zur rechtzeitigen Veranlassung von Präventions- und Therapiemassnahmen bei!

Danke!

4.4